Skip to main content

LIMIT OF GREATEST INTEGER FUNCTIONS & EXAMPLES

To prove that  lim x⟶0  [sinx/x]=0 , where [.] denotes greatest integer function .

We must first prove that sin x/x tends to 1 from the values that are 
less than 1 as x tends to zero

PROOF : Now as x tends to zero, x can take any of the values tending from right of zero and  tending from left side of zero 

Case - 1:
                First we assume that x tends from  right of the zero 
             Now,  If x= 0.001,   sin(0.001)/0.001     = 0.999999833
                        If x=0.0001,  sin(0.0001/0.0001) = 0.999999998

 Case -2:
                Now we assume that x is tending from left of the zero 
                If   x= -0.001,      sin(-0.001)/-0.001
                                          = sin(0.001)/0.001=0.999999833
                If   x=-0.0001,     sin(-0.0001)/-0.0001
                                                         = sin(0.0001)/0.0001 0.999999998
 Therefore from the above two cases we can see   that sinx/x tends  to 1 from the values that are less  than 1 as x ends to zero
Hence Proved [lim x⟶0   Sinx/x ]=0           {Since [0.....]=0}

Example:

limx⟶3  ( [x-3] + [3 - x] - 4 )

limx⟶3 ( [x] - 3 + 3 + [-x] -4)

           = (3 - 3 + 3 - 4 - 4)

           =  -9
           

                

Comments

Popular posts from this blog

Define Greatest Integer Functions with Examples

GREATEST INTEGER FUNCTIONS GREATER INTEGER FUNCTION of any term represents greatest integer present in that term but not greater than that term. GREATEST INTEGER FUNCTION (but not greater than x) is denoted by y=[x] Graph For Greatest Integer Function Greatest integer function of positive numbers:      1)    Find the greatest integer functions of the following terms                                      i) y=[8.9]  ii) y=[3.4]                 i) y=[8] , greatest integer function is 8                ii)  y=[3.4] , greatest integer function is 3 Note :  from the above cases the greatest integer function of any term represents the integer part of that number Greatest integer function of negative numbers 2)    ...

General Solutions of Trigonometric Equations

While determining the number of solutions the equation can have , we use these formulas .   General solutions to some of the standard equations Equation Solution Sin θ Θ  = nπ , n ∈  Z Cos θ Θ  = (2n+1) π /2  ,  n ∈  Z Tan θ  = 0 Θ  = n π  , n ∈  Z Sin θ  = 1 Θ  = (4n+1) π /2  ,  n ∈  Z Sin θ  = -1 Θ  = (4n-1) π /2  ,  n ∈  Z Cos θ  = 1 Θ  = 2nπ , n ∈  Z Cos θ  = -1 Θ  = (2n+1 )π, n ∈  Z Cot θ  = 0 Θ  = (2n+1 ) π /2 ,  n ∈  Z   EQUATIONS OF ANOTHER TYPES           1.    When the equation is of the form sin θ = sin α             General solution to the equation is given by θ = n π + (-1) n , n ∈ Z       2.    When the equation is of the form cos θ =  cos α   ...